Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations
نویسندگان
چکیده
Article history: Received 15 October 2012 Received in revised form 25 June 2013 Accepted 15 July 2013 Available online 23 July 2013
منابع مشابه
Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations
Implicit integration factor (IIF) methods were developed in the literature for solving time-dependent stiff partial differential equations (PDEs). Recently, IIF methods are combined with weighted essentially non-oscillatory (WENO) schemes in [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368-388] to efficiently solve stiff nonlinear advection-diffusion-reaction equations. The me...
متن کاملKrylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations
Implicit integration factor (IIF) methods were developed for solving time-dependent stiff partial differential equations (PDEs) in literature. In [Jiang and Zhang, Journal of Computational Physics, 253 (2013) 368–388], IIF methods are designed to efficiently solve stiff nonlinear advection–diffusion–reaction (ADR) equations. The methods can be designed for an arbitrary order of accuracy. The st...
متن کاملComputational Complexity Study on Krylov Integration Factor WENO Method for High Spatial Dimension Convection-Diffusion Problems
Integration factor (IF) methods are a class of efficient time discretization methods for solving stiff problems via evaluation of an exponential function of the corresponding matrix for the stiff operator. The computational challenge in applying the methods for partial differential equations (PDEs) on high spatial dimensions (multidimensional PDEs) is how to deal with the matrix exponential for...
متن کاملOperator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems
For reaction–diffusion–advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction–diffusion systems with both stiff reaction and diffusi...
متن کاملOperator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems
For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction-diffusion systems with both stiff reaction and diffusi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 253 شماره
صفحات -
تاریخ انتشار 2013